Highly efficient electrochemical reforming of CH4/CO2in a solid oxide electrolyser
نویسندگان
چکیده
منابع مشابه
Enhancing electrochemical performance by control of transport properties in buffer layers--solid oxide fuel/electrolyser cells.
The current work demonstrates how tailoring the transport properties of thin ceria-based buffer layers in solid oxide fuel or electrolyser cells can provide the necessary phase stability against chemical interaction at the electrolyte/electrode interface, while also providing radical improvements in the electrochemical performance of the oxygen electrode. Half cells of Ce0.8R0.2O2-δ + 2 mol% Co...
متن کاملSimulation of a Solid Oxide Fuel Cell with External Steam Methane Reforming and Bypass
Fuel flexibility is a significant advantage of solid oxide fuel cells (SOFCs) and can be attributed to their high operating temperature. The eligibility of a combined heat and power (CHP) system has been investigated as a new power generation methode, in this study. Natural gas fueled SOFC power systems via methane steam reforming (MSR) yield electrical conversion efficiencies exceeding 50% and...
متن کاملExperimental Investigation of a Solid Oxide Fuel Cell Stack using Direct Reforming Natural Gas
In this study, a solid oxide fuel cell (SOFC) stack has been successfully fabricated and tested by using direct natural gas. The main objective of this research was to achieve optimal long-term performance of the SOFC stack without carbon deposition by using low-cost natural gas as a fuel. The stack configuration was improved by a new interconnect design and made of cost-effective raw materials...
متن کاملCFD analysis of a solid oxide fuel cell with internal reforming: Coupled interactions of transport, heterogeneous catalysis and electrochemical processes
Direct internal reforming in solid oxide fuel cell (SOFC) results in increased overall efficiency of the system. Present study focus on the chemical and electrochemical process in an internally reforming anode supported SOFC button cell running on humidified CH4 (3% H2O). The computational approach employs a detailed multi-step model for heterogeneous chemistry in the anode, modified Butler–Vol...
متن کامل-Solid Lithium Perchlorate, a Highly Efficient and Chemoselective Catalyst for the Acetalyzation of Aldehydes
-A simple, efficient, and general method has been developed for the chemoselective acetalization of aldehydes with 1,3-propanediol, 1,2-ethanediol and trimethyl orthoformate in the presence of solid lithium perchlorate under solvent-free conditions. Both cyclic and acyclic acetals of aldehydes were obtained under environmentally benign conditions in good to excellent yields.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Science Advances
سال: 2018
ISSN: 2375-2548
DOI: 10.1126/sciadv.aar5100